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Abstract

From the basic equations of continuum mechanics in a three-dimensional (3D) isotropic and damped medium excited by

harmonic body forces, exact expressions are obtained from quadratic variables for time-averaged energy quantities:

kinetic- and strain-energy densities, structural intensity, structural intensity divergence and curl. These energy quantities

are split into four components: longitudinal, shear and two mixed ones. Each component is governed by similar relations

of different quadratic variables. For 1D wave fields, an exact formulation based on quadratic variables is derived. The

fundamental solutions of this formulation are analyzed for unloaded, and for concentrated loaded systems. The energy-

models reported in the literature consider only some components of these solutions. The energy density and structural

intensity components obtained from the quadratic formulation and from the usual displacement formulation are

equivalent; this is illustrated for the energy transfers modeled by the quadratic formulation, in comparison with the

displacement formulation, for a one-dimensional, longitudinal- and shear-wave field with wave conversion at one end.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that the prediction of vibration behavior of structures is generally difficult, due to the
complexity of a structure consisting of numerous connected elements and the large frequency range of interest.
The deterministic methods based on displacement, like Finite Element Modeling or modal formulations, are
efficient approaches in the low frequency range, but have severe limitations in the high frequency range. Short
wavelengths lead to too fine a mesh or to too many modes, only some of which can be realistically determined
due to imprecise boundary conditions. It quickly appeared that a deterministic description based on the
analytical solution of the displacement of the structure elements and their interconnection would be a very
difficult problem to solve. Skudrzyk [1,2] was one of the first to present an approximate description of the
dynamic response of complex vibrators. At high frequencies, obtaining accurate results by large
computational models of complex systems is unrealistic when too many modes participate in the response.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

c0 adiabatic speed of sound
cim constants (quadratic formulation)
ex, ey, ez unit vectors of the Cartesian coordinate

system
f external force
i, m, n integers
j ¼

ffiffiffiffiffiffiffi
�1
p

k wavenumber (waves propagating along
7x)

s external load quadratic term
t time
u displacement
v velocity
x, y, z Cartesian coordinate system
Ci constants (displacement formulation)
E Young modulus
I structural intensity
L Lagrangian density
L1, L2 length of 1D system
Q quadratic variable
T kinetic energy density
U strain energy density
W total energy density
gl, ct potentials of external force (respec-

tively, scalar- and vector-)
dmn Kronecker symbol
d(x) Dirac
e strain tensor
Z damping ratio
y angle
l, m Lamé constants
n Poisson coefficient
x general variable
r density
r stress tensor
f longitudinal scalar potential
W shear vector potential

o angular frequency

Functions, operators, and general symbols

HðxÞ ¼

0 xo0

1=2 x ¼ 0

1 x40

8><
>: Heaviside step function

dmn ¼
0 man

1 m ¼ n

�
Kronecker symbol

eimn permutation symbol, �imn ¼ ði �mÞ

ðm� nÞðn� iÞ=2 (without subscript
summation)

1 unit tensor, ð1Þmn ¼ dmn

x scalar
n vector (components xi), tensor (com-

ponents xmn)
a ¼ nq tensor-vector product, ai ¼ ximqm

a ¼ nf tensor product, amn ¼ xmizin

a ¼ n � q scalar product, a ¼ xiqi

a ¼ n� q vector product, ai ¼ �imnxmqn

a ¼ n : f contracted tensor product, a ¼ ximzmi

um;n ¼ qum=qxn, x;x ¼ qx=qx partial derivative
r
2x scalar Laplacian, r2x ¼ div grad x
r
2n vector Laplacian, r2n ¼ div grad n ¼

grad div n� curl curl n
div n tensor divergence, ðdiv nÞi ¼ qxim=qxm

grad q vector gradient, ðgrad qÞmn ¼ qqm=qxn

arg(x) complex argument
Re(x) real part
Im(x) imaginary part
x* complex conjugate

Subscript symbols

l longitudinal component
t shear (transverse) component
xjx0 , xj0�, xj0þ value of x at x ¼ x0, left-, right-

limit at x ¼ 0
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Statistical Energy Analysis (SEA) can give some responses ‘‘in the statistical sense’’ to the dynamic problem at
high frequencies for complex systems. But SEA is not a reliable predictive approach (a lot of complementary
information has to be obtained by experiment or additional modeling) and the resulting information
consists only in averaged quantities describing the behavior on a population of modes of the sub-systems.
With increasing interest in the measurement of structural intensity and the examination of experimental
results, structural intensity began to be considered in the 1980s as a tool to represent the dynamic behavior
of a structure. Other attempts have since been made to derive expressions for energy conservation and
power transfer in a local form, where energy variables are considered (as in SEA) and a local formulation
is used (as in the Finite Element Method based on the displacement formulation). After the early papers
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of Belov, Rybak, Tartakovski [3], and Buvailo and Ionov [4], the good results in one-dimensional (1D)
systems obtained by Nefske and Sung [5] and by Wohlever and Bernhard [6] motivated Ichchou, Le Bot and
Jezequel [7] to work out a more general formulation. Different energy models have been developed, dedicated
to the medium frequency range and known as the ‘‘conductivity approach’’, the ‘‘thermal analogy’’
or the ‘‘heat transfer model’’, based on different assumptions like light damping or plane wave superposition
with interference neglected. These models assume that there exists a relationship between mechanical
energy exchange and vibrational dynamics, in the form of the structural intensity expressed as the gradient of
energy density variables. The common point of the previous different works is the approximate energy
conservation equation determined from various procedures. However, the extension of these methods to 2D
systems fails [8–11]. The main reason for this failure is probably the assumption that the interference
between elementary wave components can be neglected. However, this assumption is particularly important
because it enables the use of a simple relation, which exists for an elementary wave, between its energy
flow and the amplitude of the vibration field (represented by the kinetic energy, or sometimes by the
total energy).

Based on the observation that the heat equation (analogue with an equation of thermal conductivity) is not
as yet capable of providing the basic model to predict the dynamics of the complex structures, the present
work proposes to present exact relationships linking the time-averaged energy variables (Section 2), and more
generally quadratic variables, for the following general assumptions:
(a1)
 small displacement and small strain without stress stiffening,

(a2)
 steady-state harmonic waves,

(a3)
 hysteretic damping material,

(a4)
 homogeneous and isotropic medium.
After the wave field is decomposed into longitudinal and shear components, the number of variables and
equations is discussed, with the objective of deriving closed equation sets, i.e. an exact energy- or quadratic-
formulation dedicated to a wide frequency range (Section 3). As a consequence of the simplifications occurring
in this configuration, an exact quadratic formulation is only derived for 1D systems excited by distributed
loads (Section 4). The solutions of this formulation, for free waves produced by exciting sources, are analyzed
in terms of wavenumbers, and compared to the solutions used in the energy models reported in the literature.
The equivalence of the 1D quadratic formulation and the displacement formulation is illustrated in the case of
waves excited by concentrated loads with wave conversion at one end (Section 5).
2. Fundamental equations

2.1. Linear and quadratic variables

Time harmonic wave fields of angular frequency o are considered in a medium of density r. The standard
complex notations are used for the displacement (u) and the external force (f) vectors, the strain (e) and stress
(r) tensors, where the time dependence ejot and the real part are omitted. From assumptions (a1–a2), the time
derivative is d=dt � q=qt ¼ jo where j ¼

ffiffiffiffiffiffiffi
�1
p

, and the complex velocity v and the strain tensor components
are, respectively

v ¼ jou; �kl ¼ ðuk;l þ ul;kÞ=2. (1)

The equation of momentum conservation can be written

�ro2u ¼ f þ divr: (2)

Energy quantities are proportional to the product of two of the above harmonic variables. In this sense they
are quadratic variables, and present a harmonic component at angular frequency 2o, and a steady component.
Energy and quadratic quantities are hereafter denoted by complex variables, expressed as the products of
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linear complex and a linear complex conjugate terms [12]:

I ¼ joru�=2, (3a)

T ¼ ro2u � u�=4, (3b)

U ¼ r : e�=4, (3c)

where the asterisk implies the complex conjugate. The real part of each of the complex quadratic variables (3)
is the time-averaged value of the instantaneous energy variable. The real and imaginary parts of structural
intensity I represent the active and reactive time-averaged power flux density; kinetic energy density is real and
positive, and the strain energy density is real and positive for non dissipative materials. The divergence of time-
averaged structural intensity can be expressed using the Lagrangian density L ¼ T �U and the power of
external loads [13], in a similar manner to that used in acoustics [14]

div I ¼ �2joðT �UÞ �
jo
2

f � u�. (4)

This relationship for the divergence of structural intensity expresses the local energy conservation: for non
dissipative materials, the real part is the active power developed by external loads (real part of the last term),
and both the reactive power of external loads and the Lagrangian density contribute to the local reactive
transfers.
2.2. Fundamental energy equations in isotropic and hysteretic damping material

According to the linear theory of elasticity, dissipative materials (a3) can be considered by defining complex
Lamé coefficients (a4), expressed as

l ¼ lRð1þ jZlÞ; m ¼ mRð1þ jZmÞ, (5)

where lR and mR are the elastic Lamé constants and Zl and Zm their loss factor, all of them real. Damping ratios
for both coefficients are identical in materials presenting real Poisson coefficients n ¼ l=ð2ðlþ mÞÞ. This
equality for loss factors ZlEZm is a good approximation for isotropic materials [15]. In isotropic materials, the
stress tensor and its divergence are expressed as

r ¼ ldiv u1þ 2me; divr ¼ ðlþ 2mÞgrad div u� m curl curl u.

This expression for the stress tensor divergence gives the displacement formulation for Eq. (2)

ro2uþ ðlþ 2mÞgrad div u� m curl curl uþ f ¼ 0, (6)

and the following form for energy variables (3)

I ¼ joðldiv uu� þ 2meu�Þ=2, (7a)

T ¼ ro2u � u�=4, (7b)

U ¼ ðl div udiv u� þ 2me : e�Þ=4. (7c)

The goal of this work is to obtain, if possible for general assumptions, an energy- or quadratic-formulation
for wave fields, i.e. a closed equation set for energy variables (this is reached only in the case of 1D systems, in
Section 4). The structural intensity divergence (4) can be written from energy densities and injected power.
A self-contained equation set would be obtained if structural intensity could be derived from energy densities.
But such an expression cannot be obtained, unless a very special case is considered [6]. In order to obtain a
linear closed equation set, we use not only energy variables, but also other quadratic variables. From these
extended variables, energy quantities can be linearly expressed: using identity (32a)–(32b) of Appendix A,
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structural intensity and energy densities are expressed from quadratic variables as

I ¼
jo
2
ððlþ mÞdiv u u� � mdiv u�uþ mðcurl u� � uÞ þ m gradðu � u�Þ þ m curlðu� u�ÞÞ, (8a)

T ¼ ro2u � u�=4, (8b)

U ¼
1

4
ðldiv udiv u� þ mðr2ðu � u�Þ � u � r2u� � r2u � u� � curl u � curl u�ÞÞ. (8c)

The disadvantage in the use of these general quadratic variables is that some of them have no clear physical
meaning for energy transfers. From a mathematical point of view, structural intensity I (8a) cannot be
expressed as a simple gradient of energy densities: when the fourth term ðjo=2Þm gradðu � u�Þ is proportional to
the kinetic energy density gradient (but contributes to the reactive intensity for real m), the last term is derived
from a vector potential, and the first three ones cannot be easily expressed from scalar and vector potentials.

The intensity field vector is mathematically characterized by its divergence and curl:

div I ¼
jo
2
ðldiv udiv u� � m curl u � curl u� þ mr2ðu � u�Þ þ ðlþ mÞ ðgrad div uÞ � u�

� mðgrad div u�Þ � uþ m curl curl u� � uÞ, ð9aÞ

curl I ¼
jo
2
ðldiv u curl u� þ mðdiv u curl u� � div u� curl uÞ þ m curl curlðu� u�Þ

þ ðlþ mÞgrad div u� u� � m grad div u� � uþ m curlðcurl u� � uÞÞ. ð9bÞ

The divergence (9a) expresses, as mentioned for Eq. (4), the local power conservation for longitudinal
components, and the intensity curl (9b) accounts for the local vorticity of the power density field. These
derivatives of structural intensity are used in the next sections as they present simpler expressions and less
variables than the intensity vector itself. Since Eqs. (8)–(9) involve many different quadratic variables, it is
convenient to introduce the longitudinal and shear decomposition for the displacement field, giving rise to
simpler expressions for the corresponding energy variables.

3. Longitudinal, shear and mixed components

3.1. Longitudinal and shear displacement decomposition

The linear expressions (8)–(9) for energy variables involve many different variables for only a few
relationships. In the present section, quadratic variables are split into different components. The number of
variables considered is thus increased, but the mathematical properties satisfied by each of these components
enables the production of a larger number of simpler relationships.

Simple scalar variables, such as energy densities, consist in condensed data, and are not suited to describe in detail
the complexity of the vectorial energy flow field [16]. Working with different components of structural intensity has
been suggested [17]. The present method starts with the key longitudinal- and shear-wave decomposition: from the
theorem of Helmholtz, the displacement and external load vectors can be expressed as the summation of a curl-free
and a divergence-free components [12,15,18], u ¼ ul+ut, f ¼ fl+ft, such that the curl of longitudinal components and
the divergence of shear component vanish. Each of this vector can be introduced by a scalar or a vector potential

ul ¼ gradf; f l ¼ grad gl , (10a)

ut ¼ curlW; ft ¼ curl ct, (10b)

where divW ¼ 0 and divct ¼ 0, such that the displacement formulation Eq. (6) can be split into two uncoupled
equations [12,18], expressed for their respective displacement- or potential-components

ro2ul þ ðlþ 2mÞgraddiv ul þ f l ¼ 0; ro2fþ ðlþ 2mÞr2fþ gl ¼ 0, (11a)

ro2ut � m curl curl ut þ ft ¼ 0; ro2Wþ mr2Wþ ct ¼ 0. (11b)
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Terms with l subscript represent the longitudinal waves governed by Eqs. (11a), and terms with t subscript represent
the shear (transverse) waves governed by Eqs. (11b). Each of the harmonic linear variables of Eqs. (1)–(2) is then the
summation of a longitudinal (subscript l) and a shear (subscript t) term:
�
 the strain tensor e ¼ el+et where el and et are derived (1), respectively, from ul et ut,

�
 the stress tensor r ¼ rl+rt, such that divrl ¼ ðlþ 2mÞgrad div ul and divrt ¼ �m curl curl ut.
From these linear longitudinal- and shear-components, the energy variables can then be written

I ¼ Il þ It þ Ilt þ Itl , (12a)

T ¼ Tl þ Tt þ Tlt þ Ttl , (12b)

U ¼ Ul þUt þUlt þUtl , (12c)

where each component is defined as

Il ¼ jorlu
�
l =2; It ¼ jortu

�
t =2; Ilt ¼ jorlu

�
t =2; Itl ¼ jortu

�
l =2, (13a)

Tl ¼ ro2ul � u
�
l =4; Tt ¼ ro2ut � u

�
t =4; Tlt ¼ ro2ul � u

�
t =4; Ttl ¼ ro2ut � u

�
l =4, (13b)

Ul ¼ rl : e
�
l =4; Ut ¼ rt : e

�
t =4; Ult ¼ rl : e

�
t =4; Utl ¼ rt : e

�
l =4. (13c)

Longitudinal and shear decomposition then gives rise to four terms for energy- or quadratic-variables:
�
 a pure longitudinal component (subscript l),

�
 a pure shear component (subscript t),

�
 two mixed components (subscripts lt and tl), accounting for longitudinal and shear interactions.
Because of the uniqueness of the longitudinal and shear decomposition for the displacement vector, the
separation according to (12)–(13) is also unique.

The physical meaning of this decomposition for quadratic variables is clear for pure components: l terms
account for the longitudinal wave contribution, and t terms for the longitudinal wave contribution. The
physical sense of mixed components is, however, not obvious: the total kinetic energy density T (12b) is real
and positive, both Tl and Tt are real and positive, but Ttl and Tlt are complex conjugates such that Ttl+Ttl is
real and either positive or negative. Similarly, in non-dissipative materials, the strain energy density U (12c), Ul

and Ut are real and positive, but Utl and Ult are complex conjugates and Utl+Utl is real and positive or
negative. Negative energy densities associated with mixed components can be explained as follows for the
kinetic energy density: the latter is proportional to the squared modulus u � u* of the displacement vector; for
local displacement vectors ul and ut of same direction but opposite orientations, the squared modulus of the
summation u ¼ ul+ut is smaller than the addition ul � u

�
l þ ut � u

�
t of the squared modulus of ul and ut, so that

the negative mixed kinetic energy accounts for the difference, Tlt þ Ttl ¼ T � Tl � Tt. Working with
the mixed components of decomposition (13) is not brought by power-transfer considerations, but by the
mathematical curl-free and divergence-free decomposition of the displacement vector. However, each of the
four components, including the mixed ones, contribute to energy transfers. In particular the power balance
Eq. (4) comes in the form

div Il ¼ �2joðTl �UlÞ � jof l � u
�
l =2, (14a)

div It ¼ �2joðTt �UtÞ � joft � u
�
t =2, (14b)

div Ilt ¼ �2joðTlt �UltÞ � jof l � u
�
t =2, (14c)

div Itl ¼ �2joðTtl �UtlÞ � joft � u
�
l =2, (14d)

where the summation of Eqs. (14) gives (4).
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The relevance of decomposition (12) comes from the fact that the different components (13) have simpler
expressions than the general energy variables (8)–(9), as a result of the different mathematical properties
satisfied by each separate component.

3.2. Pure longitudinal component and discussion

The following analysis considers, in the general case in an isotropic medium the pure longitudinal
component (subscript l) of energy variables. This component represents the total field when only pure
longitudinal waves are present (i.e. when u ¼ ul, ut ¼ 0, curl u ¼ 0, curl f ¼ 0). The following equations then
apply to linear acoustics in fluids, with l ¼ rc20 and m ¼ 0, where c0 is the (possibly complex) adiabatic speed of
sound. Expressions for acoustic fields are very simplified: letting m ¼ 0 in the expression (15a), acoustic
intensity Il ¼ pv�=2 reduces to the first term, where p ¼ �ldiv ul is the acoustic pressure and v� ¼ �jou� is the
acoustic velocity conjugate.

Pure longitudinal energy variables take the form

Il ¼
jo
2
ððlþ mÞdiv ulu

�
l � mdiv u�l ul þ m gradðul � u

�
l Þ þ m curlðul � u�l ÞÞ, (15a)

Tl ¼ ro2ul � u
�
l =4, (15b)

Ul ¼
1

4
ðl div ul div u

�
l þ mðr2ðul � u

�
l Þ � ul � r

2u�l �r
2ul � u

�
l ÞÞ. (15c)

From Eq. (15a), the property divðul � u�l Þ ¼ 0 and relations (11a), the divergence and the curl of Il can be
written

div Il ¼
jo
2

ldiv ul div u
�
l þ mr2ðul � u

�
l Þ þ ro2 m

l�þ2m� �
lþm
lþ2m

� �
ul � u

�
l

�
lþm
lþ2m f l � u

�
l þ

m
l�þ2m� f

�
l � ul

0
B@

1
CA (15d)

curl Il ¼
jo
2

�mr2ðul � u�l Þ � ro2 m
l�þ2m� þ

lþm
lþ2m

� �
ðul � u�l Þ

�
lþm
lþ2m f l � u�l þ

m
l�þ2m� f

�
l � ul

0
B@

1
CA. (15e)

Substituting for Eqs. (11a) into Eq. (15c), the strain energy density may be expressed as

Ul ¼
1

4

ldiv ul div u
�
l þ mr2ðul � u

�
l Þ þ mro2 1

lþ2mþ
1

l�þ2m�

� �
ul � u

�
l

þ
m

lþ2m f l � u
�
l þ

m�

l�þ2m� f
�
l � ul

0
B@

1
CA. (15f)

Working with one of the quadratic components reduces the number of quadratic variables to be used: the
quadratic variables of Eqs. (15) are the real positive scalars ul � u

�
l and div ul div u

�
l , the imaginary vector

ul � u�l , the complex vector div ulu
�
l and its conjugate. Only the simplest ones (the first three) are used for the

derivatives of structural intensity (15d)–(15e) and energy densities (15b) and (15f). In these expressions, the
contribution of external loads is clearly written as scalar- or cross-products with displacement: f l � u

�
l in

expressions of div Il and Ul, and f l � u�l in expressions of curl Il. Moreover, other relationships may be
obtained, linking quadratic variables. For example, setting p ¼ f in Eq. (32c) and substituting r2f by its
expression obtained in Eq. (11a) gives

r2ðff�Þ þ ro2 1

lþ 2m
þ

1

l� þ 2m�

� �
ff� ¼ 2ul � u

�
l �

1

l� þ 2m�
fg�l þ

1

lþ 2m
f�gl

� �
. (15g)

This relation will be useful for solving 1D fields (Sections 4 and 5).
Similar relationships, but involving more quadratic variables, can be written for the pure-shear or mixed

components (Appendix B, Eqs. (33)–(35)). Since a closed equation set cannot be derived from relationships
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(15), a general quadratic formulation is not obtained for pure longitudinal components, nor for other shear- or
mixed-ones. But the decomposition for quadratic variables is well suited to obtain an exact formulation in the
special case of wave energy transfers in 1D systems.

4. Exact 1D quadratic formulation

4.1. Energy transfers in 1D fields

The above relations are considerably simplified in the case of displacement and quadratic variables which
depend on only one direction of the 3D space. The material being isotropic (a4), we assume a dependence
along the x direction. The potentials of displacement and force are then in the form f ¼ fðxÞ, gl ¼ glðxÞ,
W ¼ CyðxÞey þCzðxÞez, ct ¼ gtyðxÞey þ gtzðxÞez. Under these particular conditions, the direction of propaga-
tion being fixed and known, longitudinal and shear components of displacement are orthogonal, and
expressions for the different components of energy quantities reduce to

longitudinal shear mixed

Il ¼
jo
2
ðlþ 2mÞdiv ulu

�
l I t ¼ �

jo
2
m curl ut � u�t Ilt ¼

jo
2
ldiv ulu

�
t

Itl ¼
jo
2
m curl ut � u�l

(16a)

Tl ¼ ro2ul � u
�
l =4 Tt ¼ ro2ut � u

�
t =4 Tlt ¼ Ttl ¼ 0 (16b)

Ul ¼
1

4
ðlþ 2mÞdiv ul div u

�
l Ut ¼

1

4
m curl ut � curl u

�
t Ult ¼ Utl ¼ 0. (16c)

The pure longitudinal and pure shear components for structural intensity are then x-oriented, curl-free, and
their divergence expressed as

curl Il ¼ 0; curl It ¼ 0, (17a)

div Il ¼
jo
4
ðlþ 2mÞ r2ðul � u

�
l Þ þ ro2 1

l� þ 2m�
�

1

lþ 2m

� �
ul � u

�
l �

1

lþ 2m
f l � u

�
l þ

1

l� þ 2m�
f�l � ul

� �
, (17b)

div It ¼
jo
4

m r2ðut � u
�
t Þ þ ro2 1

m�
�

1

m

� �
ut � u

�
t �

1

m
ft � u

�
t þ

1

m�
f�t � ut

� �
. (17c)

In contrast, mixed components of structural intensity are perpendicular to x, divergence-free, and
characterized by their curl

div Ilt ¼ 0; div Itl ¼ 0, (18a)

curl Ilt ¼
jo
4

l r2ðul � u�t Þ þ ro2 1

m�
�

1

lþ 2m

� �
ul � u�t �

1

lþ 2m
f l � u�t �

1

m�
f�t � ul

� �
, (18b)

curl Itl ¼ �
jo
4

m r2ðut � u�l Þ þ ro2 1

l� þ 2m�
�

1

m

� �
ut � u�l þ

1

m
ft � u�l �

1

l� þ 2m�
f�t � ut

� �
. (18c)

Energy transfer in 1D fields can be summarized as follows:
�
 energy densities and the x-component of structural intensity are simply the addition of the pure
longitudinal and of the pure shear components T ¼ Tl þ Tt, U ¼ Ul þUt. From (17a), these components
of structural intensities derive from a scalar potential,

�
 due to the mixed components, longitudinal and shear waves along x contribute to energy transfers in the

directions (y,z) perpendicular to x; the corresponding divergence-free (18a) intensities Ilt and Itl derive from
a vector potential, and no energy density is associated with these mixed components (16b)–(16c).
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In 1D systems, energy transfers are considerably simplified, and the decomposition (12) focuses on only a
few quadratic variables: the relations (17b)–(17c) involve the dot-products ul � u

�
l and ut � u

�
t , proportional to
kinetic energy densities (16b), and terms proportional to the power developed by external loads. Similarly,
expressions (18b)–(18c) involve the cross-product ul � u�t or its opposite conjugate, and terms related to
external loads. The energy density and structural intensity divergence or curl of each component is then
characterized by only one quadratic variable and external loads.

4.2. Quadratic formulation for 1D fields

The 1D quadratic formulation starts with the key observation that, comparing expressions (17b)–(17c) and
(14a)–(14b), the strain energy densities Ul and Ut may be expressed from kinetic energy densities and external
loads. And, reciprocally, the equation (15g) gives, for longitudinal components, a linear expression of kinetic
energy density Tl as a function of strain energy density Ul and terms proportional to the power of external
loads. These different relations linking kinetic- and strain-energy densities provide a closed set of relationships,
giving the opportunity of an exact quadratic formulation for 1D fields.

4.2.1. Exact formulation

Expressing div ul ¼ r
2f, curl ut ¼ r

2W and their conjugates from Eqs. (11) for potentials f and C, the
strain energy densities (16c) in 1D systems take the form

Ul ¼
lþ 2m

4
div ul div u

�
l ¼

k�2l

4
ro2ff� þ fg�l þ glf

�
þ

glg
�
l

ro2

� �
, (19a)

Ut ¼
m
4
curl ut � curl u

�
t ¼

k�2t

4
ro2W �W� þW � c�t þ ct �W

�
t þ

ct � c
�
t

ro2

� �
, (19b)

where kl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ro2=lþ 2m

p
and kt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ro2=m

p
are, respectively, the longitudinal and shear wavenumbers. As a

consequence, the kinetic- and strain-energy densities of longitudinal components are thus linked by the
following equation set:

r2Tl þ k2
l þ k�2l

� �
Tl ¼ 2k2

l Ul �
k2

l
4
f lu
�
l �

k�2
l
4

f�l ul ;

r2Ul þ k2
l þ k�2l

� �
Ul ¼ k�2l

2Tl þ
1
2
f l � u

�
l þ

1
2
f�l � ul

� 1

4k2
l

div ul div f
�
l �

1

4k�2
l

div u�l div f l þ
1

2ro2 f l � f
�
l

0
@

1
A:

8>>>><
>>>>:

(20a)

The first equation is obtained in identifying Eqs. (14a) and (17b) according to the definition (16b) of Tl; the
expression of Ul from variable ff* (right-hand side of Eq. (19a)), when combined with Eq. (15g) gives the
second equation of the set (20a). Due to the similar simple expressions (16), (19b) for shear energy variables in
1D systems, a similar equation set is obtained for shear energy densities:

r2Tt þ k2
t þ k�2t

� �
Tt ¼ 2k2

t Ut �
k2t
4
ft � u

�
t �

k�2t
4

f�t � ut

r2Ut þ k2
t þ k�2t

� �
Ut ¼ k�2t

2Tt þ
1
2
ft � u

�
t þ

1
2
f�t � ut �

1

4k2t
curl f�t � curl ut �

1

4k�2t

curl ft � curl u
�
t

þ 1
2ro2 ft � f

�
t

0
@

1
A

8>>>><
>>>>:

(20b)

For the mixed components, a very similar set is obtained for the quadratic variables div u�l curl ut and ut � u�l
of Eqs. (18b)–(18c)

r2ðut � u�l Þ þ k2
t þ k�2l

� �
ut � u�l ¼ �2 div u

�
l curl ut �

k2t
ro2 ft � u�l þ

k�2
l

ro2 f
�
l � ut

r2ðdiv u�l curl utÞ þ k2
t þ k�2l

� �
div u�l curl ut

¼ k2
t k�2l

�2ut � u�l �
2

ro2 ft � u�l þ
2

ro2 f
�
l � ut

� 1

k2t ro
2 div f

�
l curl ut �

1

k�2
l
ro2 div u

�
l curl ft �

2
r2o4 ft � f�l

0
@

1
A:

8>>>>>>>><
>>>>>>>>:

(20c)
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An equivalent expression for this system can be obtained by replacing the variable div u�l curl ut ¼ r
2f�r2W

by k2
t k�2l fW and modifying the contribution of external loads according to Eq. (11).

4.2.2. Exact homogeneous solutions

It is interesting to consider the homogeneous solutions for the sets (20), satisfied by quadratic variables in a
portion of medium free of external load. Removing external loads, the sets (20) reduce, respectively, to

r2Tl þ k2
l þ k�2l

� �
Tl ¼ 2k2

l Ul ;

r2Ul þ k2
l þ k�2l

� �
Ul ¼ 2k�2l Tl ;

(
(21a)

r2Tt þ k2
t þ k�2t

� �
Tt ¼ 2k2

t Ut;

r2Ut þ k2
t þ k�2t

� �
Ut ¼ 2k�2t Tt;

(
(21b)

r2ðul � u�t Þ þ k2
t þ k�2l

� �
ul � u�t ¼ 2k2

t k�2l f�W;

r2ðf�WÞ þ k2
t þ k�2l

� �
f�W ¼ 2ut � u�l ;

8<
:
3

r2ðul � u�t Þ þ k2
t þ k�2l

� �
ul � u�t ¼ �2 div u

�
l curl ut;

r2ðdiv u�l curl utÞ þ k2
t þ k�2l

� �
div u�l curl ut ¼ �2k2

t k�2l ut � u�l

8<
: . ð21cÞ

When written for energy densities, the first equation of the sets (21a)–(21b) was obtained for real
wavenumbers in the absence of damping (Eqs. (10) in Ref. [19]) for membranes. The summation, or the
difference betwen the two equations constituting the sets (21a)–(21b) give the following relations, linking the
total energy density W ¼ T þU and the Lagrangian density L ¼ T �U

r2W l ¼ � k2
l � k�2l

� �
Ll ;

r2Ll þ 2 k2
l þ k�2l

� �
Ll ¼ k2

l � k�2l

� �
W l ;

(
r2W t ¼ � k2

t � k�2t

� �
Lt;

r2Lt þ 2 k2
t þ k�2t

� �
Lt ¼ k2

t � k�2t

� �
W t:

(

Substituting one equation into the other for each of the above sets give the following fourth-order
equations, satisfied by any variable (kinetic-, strain- or total-energy densities and Lagrangian density) for pure
longitudinal or shear components,

r4xl þ 2 k2
l þ k�2l

� �
r2xl þ k2

l � k�2l

� �2
xl ¼ 0 for xl ¼ Tl ;Ul ;W l or Ll , (22a)

r4xt þ 2 k2
t þ k�2t

� �
r2xt þ k2

t � k�2t

� �2
xt ¼ 0 for xt ¼ Tt;Ut;W t or Lt (22b)

and by any quadratic variable xlt ¼ ut ^ u�l , f*W or div u�l curl ut for mixed components

r4xlt þ 2 k2
t þ k�2l

� �
r2xlt þ k2

t � k�2l

� �2
xlt ¼ 0. (22c)

In the case of light damping, Mencik [20] obtained (i) a coupled equation set for energy densities T and U

corresponding to Eq. (21a) for quasi-longitudinal waves in rods, and (ii) the equations of order four (22a)
satisfied by T and U.

Each of the fourth-order Eqs. (22) is in the form

r4 þ 2 k2
A þ k�2B

� �
r2 þ k2

A � k�2B

� �2� �
x ¼ 0, (23)

where
(i)
 A ¼ B ¼ l or A ¼ B ¼ t, for the energy- and Lagrangian-density variables of (22a)–(22b) concerning,
respectively, pure longitudinal or pure shear components; Eq. (23) is then satisfied for any quadratic
variable (kinetic-TA, strain-Re(UA) or total-Re(WA) energy densities, Lagrangian density Re(LA),
hysteretic dissipated power proportional to Im(UA) ¼ Im(WA) ¼ �Im(LA), (ff*, ul � u

�
l , div ul div u

�
l ) or

(C �C*, ut � u
�
t , curl ut � curl u

�
t ),
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Fig. 1. Representation of the wavenumbers of pure longitudinal or pure shear components, in the complex plane, by arrows 7k for

displacement forward and backward-propagative waves, by dots 7(k7k*) for the corresponding quadratic variables.
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kt

kt-kl*

-kt+kl*

-kl

-kt

-kt-kl*
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Fig. 2. Representation of the wavenumbers of the mixed component of type tl (for example ut � u�1), in the complex plane, by arrows 7kl

and 7kt for displacement forward and backward-propagative waves, by dots �ðkt � k�l Þ for the corresponding tl quadratic variables. The

wavenumbers for quadratic components of type lt (like ul � u�t ) are the complex conjugate �ðk�t � klÞ. Wavenumbers kl and kt are here

represented for Lamé coefficients presenting different complex arguments argðlÞa argðmÞ.
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(ii)
 A ¼ t and B ¼ l for the last Eqs. (22c) concerning mixed components.
Eq. (23) can be factorized as

ðr2 � r1Þðr
2 � r2Þx ¼ 0 where r1 ¼ �jðkA � k�BÞ

� �2
and r2 ¼ �jðkA þ k�BÞ

� �2
(24)

such that the solution for the homogeneous systems highlights the properties of quadratic variables for 1D fields:
the displacement- or potential-fields in a medium free of external loads, and depending on the only x-coordinate
may be described as the superposition of (+x) forward- and (�x) backward-propagating waves. Let us consider
waves A and B, presenting, respectively, the wavenumbers kA and kB. The time averaged quadratic variable, being
the product of a displacement A (or its derivative of any order) and the conjugate of another B, consists in a term
of wavenumber kA þ k�B. Combining any propagative or counter-propagative waves7kA and7kB gives the four
terms of wavenumbers �ðkA � k�BÞ that are enhanced by the factorization (24). Then,
(i)
 when the quadratic variable is such that kA ¼ �kB, as encountered for a pure-longitudinal- or shear-
component, the four resulting quadratic components present two opposite real and two conjugate
imaginary wavenumbers (Fig. 1), whereas
(ii)
 for mixed component ones, kA differs from kB, such that the resulting quadratic component are complex,
pair opposed. The resulting wavenumbers are presented in Fig. 2 for quadratic variables of type xtl; the
conjugate quadratic wavenumbers are obtained for quadratic variables xlt, because mixed components
with subscripts tl and lt imply conjugate quadratic variables (Appendix B2).
4.2.3. Approximate solutions

The additional approximations usually introduced in energy flow methods, like light damping, are
unnecessary to model energy transfers in 1D systems. Some of these approximations result of the removal of
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some of the components of quadratic variables: for example, ignoring interference among different waves
removes the mixed quadratic variables and the associated energy transfer.

Another example is the following, in the case where only one type of wave is considered, either pure longitudinal
or pure shear, with displacement wavenumber7k such that k2

¼ k2
R=ð1þ jZÞ. Any quadratic variable involves the

four components with wavenumbers7(k7k*) (Fig. 1), and terms r1 and r2 of the factorized Eq. (24) take the form
of the Taylor series expansion r1 ¼ k2

RðZ
2 � 5Z4=4þOðZ6ÞÞ, r2 ¼ �k2

Rð4� 3Z2 þ 11Z4=4þOðZ6ÞÞ, giving, for
small hysteretic damping Z51, the approximate factorized Eq. (24)

r2 � k2
RZ

2
� �

r2 þ 4k2
R

� �
x ¼ 0. (25)

This equation is satisfied by any quadratic variable x, among others W and L. The General Energy Method [21]
focuses only on the first factor of the factorized Eq. (25) when considering energy density W, and only the second
factor when considering Lagrangian density L (Eq. (20) in Ref. [21]). This approach leads to the consideration of only
imaginary quadratic wavenumbers 7(k�k*) for W, and of only real ones 7(k+k*) for L (Eq. (21) in Ref. [21]).

The present work confirms that the energy variables are then significantly simplified in 1D systems. These
simplifications enable the development of efficient energy models [6,7,21,22] in such configurations, even if
unnecessarily restrictive conditions are assumed. For example, the thermal analogy assumes that the structural
intensity derives from a scalar potential, this being demonstrated in the case of a simple propagating plane
wave [6]. If the mixed components which combine longitudinal and shear displacement component are
ignored, structural intensity actually derives from a scalar potential for 1D fields, even if wave interference
between forward and backward propagative waves is considered. However, this scalar potential cannot be
written as a combination of the total-, the kinetic- and the strain-energy densities.

5. Agreement of the displacement- and the 1D quadratic-formulations

The following application is presented to illustrate the ability of the quadratic formulation (20) to obtain
exact 1D solutions. No approximation is necessary, the model is suited to 1D problems, for any frequency
range; the assumptions are those (a1–a4) presented in Section 1, external loads are applied and the different
types of waves are coupled due to the boundary conditions involved.

We consider the semi-infinite medium �L1pxpL2, �Noyo+N, �Nozo+N, where forward and
backward-propagating waves in only the7x direction are present, and the interference between these waves is
considered. Hysteretic damping and the use of an isotropic material are considered; these properties are
expressed in terms of complex Lamé coefficients (l, m), having the same complex argument Zl ¼ Zm (5). Each
Cartesian component of the displacement then corresponds to a particular type of wave: the x-displacement
component represents longitudinal waves ul ¼ ulxex, and the two remaining y- and z-components correspond,
respectively, to y- and z-oriented shear waves ut ¼ utyey þ utzez. External loads are applied in the plane x ¼ 0
by forces, in the x and y directions; these loads are expressed by the local surface forces fl ¼ f xdðxÞex and
ft ¼ f ydðxÞey where d(x) is the Dirac function at x ¼ 0, or, equivalently, by their potentials

gl ¼ f xHðxÞ; ct ¼ �f yHðxÞey, (26)

where H(x) is the Heaviside function. The different components of external loads excite different types of
waves: x-directed f l ¼ f xex and y-directed ft ¼ f yey loads correspond, respectively, to longitudinal and y-shear
waves propagating in the 7x direction. The boundary conditions are:
�
 on the left end, at x ¼ �L1: the x-component for displacement vanishes, y and z displacement are free and
the corresponding shear strains vanish,

�
 the right end (x ¼ L2) consists in a vanishing y-component for displacement and a frictionless slide surface

condition of angle y: the x- and z-displacement components are linked by the tangent of the angle utzðLÞ ¼

tgyulxðLÞ and the shear stress related to this y-inclined surface vanishes.

Due to this last boundary condition, a coupling between x-longitudinal and z-shear components is present
at x ¼ L2, such that, when combined with the external loads considered, longitunal, y- and z-shear waves are
excited in both directions 7x.
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To compute energy densities and energy transfers in this system, the two following methods are available:
one using the displacement formulation, and the other using the quadratic formulation. They are compared
below.

5.1. Displacement formulation

The usual solution, based on the displacement formulation (11), consists in determining the displacement
field, and successively express strain, stress, and finally energy densities and structural intensity. We present
here the results obtained from the displacement and load potentials. Considering excitations (26), solutions for
the potential Eqs. (11) are in the form:

f ¼ C1 cos ðklxÞ þ C2 sin ðklxÞ þ
f xH0

ro2
ðcosðklxÞ � 1Þ, (27a)

W ¼ ðC3 cosðktxÞ þ C4 sinðktxÞÞey þ C5 cosðktxÞ þ C6 sinðktxÞ þ
f yH0

ro2
ðcosðktxÞ � 1Þ

� �
ez, (27b)

where kl and kt are, respectively, the wavenumbers for longitudinal and shear waves. The six constants
(C1, C2, C3, C4, C5, C6) are determined to satisfy the boundary conditions (Table 2): ulxj�L1

¼ 0,
muty;xj�L1

¼ 0, mutz;xj�L1
¼ 0 (vanishing x-displacement and shear stress at x ¼ �L1) utyjL2

¼ 0,
ðutz � tg yulxÞ

		
L2
¼ 0, ððlþ 2mÞ cos yulx;x þ m sin yutz;xÞjL2

¼ 0 (vanishing y-displacement and slide condi-
tion of angle y at x ¼ L2).

Deriving this solution for displacement potentials gives the displacement vectors (10), strain and stress
tensors; energy quantities (12)–(13) can be obtained by products of these linear variables. This example shows
that, for 1D waves, the displacement formulation:
(i)
 presents three components of displacement (ulx, uty and utz, or alternatively the longitudinal scalar
potential f and the two-components vector potential CyCz),
(ii)
 requires six boundary conditions to determine the displacement wave field,

(iii)
 characterizes the excitation of each of the wave component by a local force (fx and fy in this case), i.e. one

discontinuity for the potential (27).
5.2. Quadratic formulation for 1D problems

Another way to determine energy variables is to directly compute quadratic variables, using relations (20):
energy densities are first obtained, and then the known right-hand side term of Eqs. (17)–(18) is integrated to
obtain structural intensities.

Except at the boundaries, longitudinal-, y- and z-directed shear waves are uncoupled in the bulk of the
domain. When expressed in terms of quadratic variables, they give the following systems of equations for
quadratic variables nQT and nQU, n ¼ 125 (summarized in Table 1):
�
 pure longitudinal components (n ¼ 1 in Table 1), denoted by subscript l in Section 3.1, are energy densities
Tl and Ul, satisfying Eqs. (20a),

�
 pure shear components (n ¼ 2; 3 in Table 1, subscript t) are related by the energy densities Tt and Ut, i.e.

the scalar products curl ut � curl u
�
t and ut � u

�
t , satisfying Eqs. (20b). Such scalar products for vectors are the

summation of two products, each containing a y- or z-displacement component, these differently oriented
shear waves being uncoupled. Energy densities can then be presented as the summation of two terms
Tt ¼ Tty þ Ttz, Ut ¼ Uty þUtz, where

Tty ¼ ro2uty � u
�
ty=4; Uty ¼

m
4

uty;xu�ty;x, (28a)
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Table 1

Quadratic variables of Eqs. (30), which are the different components of the variables of equation sets (20)

Component n nQU
nQT k1 k2

Longitudinal 1 Ul Tl kl kl

Shear y 2 Uty Tty kt kt

Shear z 3 Utz Ttz kt kt

Mixed longitudinal by shear z 4 QUxy ¼ �utz;xu�lx;x QTxy ¼ utzu�lx kl kt

Mixed longitudinal by shear y 5 QUxz ¼ uty;xu�lx;x QTxz ¼ �utyu�lx kl kt

Tt ¼ Tty þ Ttz; ut � u�l ¼ QTxyey þQTxzez

Ut ¼ Uty þUtz; div u
�
l curl ut ¼ QUxyey þQUxzez
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Ttz ¼ ro2utz � u
�
tz=4; Utz ¼

m
4

utz;xu�tz;x. (28b)

The system (20b) can then be split into two similar systems concerning, respectively, the y- and z-oriented
shear waves; the former is written

r2Tty þ k2
t þ k�2t

� �
Tty ¼ 2k2

t Uty �
k2t
4

f tyu�ty �
k�2t
4

f �tyuty

r2Uty þ k2
t þ k�2t

� �
Uty ¼ k�2t

2Tty þ
1
2

f tyu�ty þ
1
2

f �tyuty �
1

4k2t
f �ty;xuty;x

� 1

4k�2t

f ty;xu�ty;x þ
1

2ro2 f ty f �ty

0
B@

1
CA

8>>>>><
>>>>>:

(29)

and the latter is obtained in substituting variables of y-components by these of z-components,
�
 mixed quadratic components (n ¼ 4; 5 in Table 1, subscripts lt and tl) satisfy the same vectorial system
(20c). The quadratic variables involved present a vanishing x-component, such that the y- and z-
components of this vectorial system can also be split into two scalar systems, expressing, respectively,
interactions between longitudinal and y-shear or longitudinal and z-shear waves.

Working with quadratic variables leads to solve five scalar systems, because the interaction between y- and
z-shear waves does not contribute to energy densities nor to power flow. The first three ((20a), (29) and the
corresponding system for tz variables) involving pure longitudinal or pure transverse components, are in the
form

r2 nQT þ k2
2 þ k�21

� �
nQT � 2k2

2
nQU ¼ s0dð0Þ;

r2 nQU þ k2
2 þ k�21

� �
nQU � 2k�21

nQT ¼ s1dð0Þ þ s2dð0Þ;x;

(
n ¼ 123, (30a)

where the quadratic variables nQT and nQU are the energy density components and k ¼ k1 ¼ k2 are the
corresponding wavenumbers, presented in Table 1 (n ¼ 123). The right-hand sides represent excitation of the
system by external loads at x ¼ 0:

s0 is the discontinuity of T ;x s0 ¼ �ðk
2f j0u�j0 þ k�2f �j0 uj0Þ=4;

s1 the discontinuity of U ;x s1 ¼ k�2ðf j0uj0 þ f �j0 u�j0Þ=4;

and s2 the discontinuity of U s2 ¼
k�2

4

f j0f �j0
ro2 �

f �j0u;xj0�
k2

�
f j0u�;xj0�

k�2

� �
;

where xj0 (respectively xj0�, xj0þ) is the notation for the value of x at x ¼ 0 (respectively left, right limit).
The two last scalar systems, concerning mixed components, are in the form

r2 nQT þ k2
2 þ k�21

� �
nQT þ 2 nQU ¼ s0dð0Þ;

r2 nQU þ k2
2 þ k�21

� �
nQU þ 2k2

2k
�2
1

nQT ¼ s1dð0Þ þ s2dð0Þ;x

(
n ¼ 4; 5, (30b)
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where the quadratic variables nQT and nQU and the wavenumbers k1 and k2 are presented in Table 1 (n ¼ 4; 5).
The right-hand side of Eq. (30b) represents excitation of the system by external loads: s0, s1 and s2 are,
respectively, the discontinuity of nQT,x,

nQU,x and nQU at x ¼ 0.
For each of these five scalar sets (n ¼ 125), the solution in the bulk of the domain is expressed as the

summation of a general solution, in the form

nQUm ¼ c1m cosððk1 � k�2ÞxÞ þ c2m sinððk1 � k�2ÞxÞ þ c3m cosððk1 þ k�2ÞxÞ þ c4m sinððk1 þ k�2ÞxÞ;
nQTm ¼ k1k

�
2 c1m cosððk1 � k�2ÞxÞ þ c2m sinððk1 � k�2ÞxÞ � c3m cosððk1 þ k�2ÞxÞ � c4m sinððk1 þ k�2ÞxÞ
� �(

and a particular solution of Eq. (30a) or Eq. (30b) which accounts for the external loads.
Solution of the quadratic formulation can then be obtained in determining the 20 constants cim (i ¼ 124,

m ¼ 125) in order to satisfy the 20 relations for boundary conditions, when expressed using quadratic
variables, as presented in Table 2. The boundary conditions for quadratic variables are obtained from the
displacement boundary conditions, according to the definition of the quadratic variables (Table 1). Energy
densities and other quadratic variables for the different type of waves (pure longitudinal, y- and z-shear, mixed
components) are then obtained directly.

The use of the 1D quadratic formulation requires an important computational effort:
(i)
Tabl

Boun

Disp

At x

ul

mð
mðq

At x

ut

ul

(

five equation sets of two variables are considered,

(ii)
 one end is characterized by two conditions for each of these systems, i.e. a total amount of 20 boundary

conditions for the 1D system,

(iii)
 a local excitation is characterized, for each of these five components, by the three discontinuities of nQT,x,

nQU,x and nQU; since the displacement components are continuous, the continuity of the variables nQT

(proportional to the squared modulus of the displacement) are ensured at the point of concentrated
excitation.
The different structural intensity components can be next computed as follows: the total structural intensity
I is the summation (12a) of pure longitudinal Il and shear It components, and mixed components Ilt and Itl. As
discussed above for energy densities, the pure shear component It ¼ ð�jo=2Þm curl ut � u�t may be presented as
the summation of two contributions, It ¼ Ity þ Itz, each of them pointing in the 7x direction, but
e 2

dary conditions for the displacement (left) and the quadratic (right) formulations (notation: ;x ¼ q=qx)

lacement Quadratic variables

¼ �L1:

x ¼ 0 Tl ¼ 0 Ul;x ¼ 0 Uty ¼ 0 Utz ¼ 0

quty=qxÞ ¼ 0 Tty;x ¼ 0 QUy ¼ 0 QUxz ¼ 0

utz=qxÞ ¼ 0 Ttz;x ¼ 0 QUz ¼ 0 QUxy ¼ 0

¼ L2:

yðLÞ ¼ 0 Tty ¼ 0 Uty;x ¼ 0 QTxz ¼ 0
utz ¼ tan yulx

x;x þ
m

lþ2m tan yutz;x ¼ 0

Ttz ¼ tan2 yTl

ro2QTxy=4 ¼ tan yTl

Ttz;x þ
lþ2m
m Tl;x ¼ 0

Ul ¼ tan2 y m�

l�þ2m� Utz

Ul;x þ
m�

l�þ2m� Utz;x ¼ 0

Tl;x þ
mk�

l

4ðk�2
l
�k2t Þ

tan yþ lþ2m
m tan y

� �
QUxy;x �

ðlþ2mÞk�2
l

m tan y þ k2
t tan y

� �
QTxy;x

� �
¼ 0

ro2

l�þ2m� QTxz;x �QUxz;x ¼ 0

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:
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corresponding, respectively, to the y- or z-displacement component of the differently polarized shear waves.
These two components of pure shear structural intensity are linked to the corresponding energy density
components (Tty, Ttz, Uty, Utz), such that the scalar Eq. (17c) may also be split into the two scalar equations

div Ity ¼
jo
4

m
4

ro2
DTty þ ðk

�2
t � k2

t ÞTty

� �
�

1

m
f tyu�ty þ

1

m�
f �tyuty

� �
,

div Itz ¼
jo
4

m
4

ro2
DTtz þ ðk

�2
t � k2

t ÞTtz

� �
�

1

m
f tzu�tz þ

1

m�
f �tzutz

� �
. ð31Þ

The vectorial Eqs. (18) present the only two y- and z-non vanishing components; each of them can be treated
separately, giving rise to four scalar equations, applied, respectively, to the y- and z-components of Ilt and Itl.

From the quadratic variables (energy densities), determined above, and external loads terms, the right-hand
side of Eqs. (17b) and (31) and the y- and z-components of Eqs. (18b)–(18c) are known; the structural intensity
components corresponding to each wave interaction (pure longitudinal, y- or z-shear, mixed (longitudinal by
y-shear) or (longitudinal by z-shear) of components Ilt and Itl) is computed by integrating these equations, with
adequate boundary conditions:
�
 pure longitudinal, pure y-shear and pure z-shear waves contribute to energy flow in the x direction. Due to
the boundary conditions, each of these components of structural intensity vanishes at x ¼ �L1 (Ilj�L1

¼ 0,
Ityj�L1

¼ 0, Itzj�L1
¼ 0). At x ¼ L2, ItjL2

¼ 0 and the power flow of longitudinal and z-shear waves is
reflected and converted in the opposite wave type, ðIl þ ItzÞjL2

¼ 0. Only the left (x ¼ �L1) or the right
(x ¼ L2) boundary condition is necessary to integrate structural intensity components, and the boundary
conditions at the opposite end are naturally satisfied by the result of this computation,

�
 mixed components contribute to energy transfers in the y- and z-directions; although waves are propagating

in the 7x direction only, structural intensity presents non-zero y- and z-components, locally, and when
averaged over the thickness of the domain,

R�L2
�L1

Ilt þ Itldxa0. The y- and z-components of
Eqs. (18b)–(18c) are integrated, with the boundary conditions

ðItl � eyÞj�L1
¼ 0; ðItl � ezÞj�L1

¼ 0; ðIlt � eyÞjL2
¼ 0; Ilt � ez �

l tan y
lþ 2m

Il � ex

� �				
L2

¼ 0.

5.3. Numerical results for the displacement- and the quadratic-formulations

The displacement and energy field at a frequency of 10 kHz are presented for longitudinal component
(Fig. 3), y- and z-shear component (Figs. 4 and 5) and mixed components (Figs. 6 and 7), in a medium of
density r ¼ 7800 kgm�3, Young modulus E ¼ 210ð1þ 0:01jÞGPa and Poisson ratio n ¼ 0:3, L1 ¼ L2 ¼ 10m,
f x ¼ f y ¼ 1Nm�2. The different components of displacement, obtained using Eqs. (27), are presented in
Figs. 3a, 4a and 5a. As presented above, the different components for kinetic- and strain-energy densities may
be obtained from the displacement formulation (27) and definitions (13) and (28) (Section 5.1), or using the
quadratic formulation in directly solving the solution sets (30) for energy densities, from which structural
intensity may be integrated (Section 5.2). The graphs of energy variables obtained form both the displacement
and the quadratic formulations are superimposed in Figs. 3–5 (b–f) and in Figs. 6 and 7. Since no
approximation has been introduced in the quadratic formulation, these two different approaches are strictly
equivalent: the corresponding graphs are undistinguishable, even when detailed views are observed in
Figs. 3–5(e–f) and in Fig. 7.

In the system studied, the power of excitation is provided by the loading forces at x ¼ 0 for longitudinal
(Fig. 3) and y-shear (Fig. 4) waves, highlighted by the discontinuity of the real part of structural intensity
(d, e). This power is dissipated in the structure, giving a vanishing structural intensity on both ends x ¼ �L1

and x ¼ L2, except, due to the slide condition at x ¼ L2 where the longitudinal intensity is converted into
z-shear form (Fig. 5e), and dissipated in this z-shear form (Fig. 5d).

In a section of unloaded structure, any energy quantity, as a quadratic variable, is the combination of four
components with different wave-numbers (Figs. 1 and 2). In the case of pure longitudinal or pure shear
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components, terms with wavenumbers in the form 7(k+k*) show spatial variations close to the half
displacement wave length p/k, while the others, of wavenumbers 7(k�k*), highlight variations at larger space
scale, determined by the hysteretic damping properties of the material. These two very different scale length
for the energy variables make the local representation of energy transfers difficult. However, all these four
components are necessary to accurately represent energy densities of pure longitudinal (Fig. 3b and c), pure
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shear (Figs. 4 and 5(b,c)) components and mixed quadratic variables (Figs. 6 and 7). The structural intensity
involves these components separately: the active power flow is mainly described by components of
wavenumbers 7(k�k*), and the reactive one by components of wavenumbers 7(k+k*) (Figs. 3–5(d,e)). As
discussed in Section 4.2, approximate energy models use to focus on large scale energy transfers, considering
only quadratic components showing smooth spatial variations, i.e. wavenumbers 7(k�k*).
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6. Conclusion

For harmonic wave fields in homogeneous, isotropic and hysteretic damped materials, the time-averaged
energy densities and the structural intensity are not linked by a closed set of equations. Energy variables can be
written as linear expressions, provided other quadratic variables are used. From the longitudinal and shear
components for displacement, these variables can be presented as the summation of four quadratic
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components, pure longitudinal, pure shear and two mixed ones, each satisfying specific relationships.
However, these additional equations are not sufficient to obtain a quadratic formulation, except in the case of
1D systems, where particular simplifications are satisfied by the energy field.

This exact formulation for 1D systems excited by external sources is suited to a wide frequency range,
without any other simplifying assumptions such as light damping being necessary. The equivalence of the
displacement and the quadratic formulations is illustrated in a system with wave conversion at one end, and
excited by concentrated loads. The solution for this quadratic formulation is analyzed in terms of
wavenumbers for free waves. However when compared to the displacement formulation, the quadratic
formulation for 1D energy fields involves differential equations of higher order, more variables and more
complicated expressions for boundary conditions. Another difference is the introduction of the external loads:
excitations are characterized by a concentrated force in the displacement formulation, but by many different
terms in the quadratic formulation. For example, a concentrated load is characterized by discontinuities of the
strain energy density and of the first spatial derivative of kinetic- and strain-energy densities. Moreover, the
solutions for the quadratic formulation evidence variations at a spatial scale that is half of the displacement
wavelength. As a result of this additional complexity, this complete 1D quadratic formulation is not
practically suited to compute the energy field. Nevertheless the present work confirms that 1D systems are the
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most favorable configuration to develop energy models, and proves that very general assumptions are
sufficient to obtain an exact quadratic formulation in such systems.
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Appendix A

Formulas

For any vector q, with e denoting the symmetric part of the u vector gradient (Eq. (1)),

2eq ¼ gradðu � qÞ þ curlðu� qÞ þ ðcurl qÞ � u� udiv qþ qdiv u, (32a)

and

2e : e� ¼ r2ðu � u�Þ � u � r2u� � r2u � u� � curl u � curl u�. (32b)

for any scalar p or vector q

r2ðpp�Þ ¼ pr2p� þ p�r2pþ 2 grad p � grad p�. (32c)

r2ðq � q�Þ ¼ q � r2q� þ q� � r2qþ 2grad q : gradT q�. (32d)
Appendix B

B1. Pure shear component

Expressions for structural intensity and energy densities for pure shear displacement are

It ¼ jom curl u�t � ut þ gradðut � u
�
t Þ þ curlðut � u�t Þ

� �
=2, (33a)

Tt ¼ ro2ut � u
�
t =4. (33b)

Ut ¼ m r2ðut � u
�
t Þ � ut � r

2u�t �r
2ut � u

�
t � curl ut � curl u

�
t

� �
=4. (33c)

Substituting for shear displacement Eq. (11b) in the divergence and the curl of Eq. (33a) gives

div It ¼
jo
2
�m curl ut � curl u

�
t þ mr2ðut � u

�
t Þ þ ðm=m

�Þro2ut � u
�
t þ ðm=m

�Þf�t � ut

� �
(33d)

curl It ¼
jo
2

m curl curlðut � u�t Þ � ro2ðm=m�Þut � u�t þ m grad curl u�t � ut

� �
�2met curl u

�
t þ ðm=m

�Þf�t � ut

 !
. (33e)

The quadratic variables of Eqs. (33d)–(33e) are the real positive scalars ut � u
�
t and curl ut � curl u

�
t , the vectors

ut � u�t (imaginary) and curl u�t � ut (complex), and more complicated variables such as grad curl u�t � ut

� �
and

et curl u
�
t for curl It. These expressions governing shear components then imply more variables than relations

(15) linking longitudinal variables. A general simple relationship like (15g) is not available for general shear
fields, because the expression of the dot-product Laplacian (32d) for q ¼ W reveals more complex than
expression (32c) for the product of scalars.
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B2. Mixed components

Mixed components present similar, but more complicated expressions

Ilt ¼
jo
2
ðlþ mÞdiv ulu

�
t þ m curl u�t � ul

� �
þ m gradðul � u

�
t Þ þ m curlðul � u�t Þ

� �
, (34a)

Tlt ¼ ro2ul � u
�
t =4, (34b)

Ult ¼
m
4
r2ðul � u

�
t Þ � ul � r

2u�t � r
2ul � u

�
t

� �
, (34c)

div Ilt ¼
jo
2

mr2ðul � u
�
t Þ þ

m
lþ 2m

� 1þ
m
m�

� �
ro2ul � u

�
t �

lþ m
lþ 2m

f l � u
�
t þ

m
m�

f�t � ul

� �
, (34d)

curl Ilt ¼
jo
2

ðlþ 2mÞdiv ul curl u
�
t �

2lþ3m
lþ2m þ

m�m�

m�

� �
ro2ul � u�t � mr2ðul � u�t Þ � 2mel curl u

�
t

�
lþm
lþ2m f l � u�t þ

m
m� f
�
t � ul

0
B@

1
CA (34e)

and

Itl ¼
jo
2
�mdiv u�l ut þ m gradðut � u

�
l Þ þ m curl ðut � u�l Þ

� �
. (35a)

Ttl ¼ ro2ut � u
�
l =4. (35b)

Utl ¼
m
4
r2ðut � u

�
l Þ � ut � r

2u�l � r
2ut � u

�
l

� �
, (35c)

div Itl ¼
jo
2

mr2ðut � u
�
l Þ þ

m
l� þ 2m�

ro2ut � u
�
l þ

m
l� þ 2m�

f�l � ut

� �
, (35d)

curl Itl ¼
jo
2

�mdiv u�l curl ut � mr2ðut � u�l Þ �
m

l�þ2m� ro
2ut � u�l

þm grad curl ut � u
�
l

� �
þ

m
l�þ2m� f

�
l � ut

0
@

1
A. (35e)
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[21] Y. Lase, M.N. Ichchou, L. Jezequel, Energy flow analysis of bars and beams: theoretical formulations, Journal of Sound and Vibration

192-1 (1996) 281–305.

[22] A. Bocquillet, M.N. Ichchou, L. Jezequel, Energetics of fluid-filled pipes up to high frequencies, Journal of Fluids and Structures 17

(2003) 491–510.


	Energy flow relations from quadratic quantities �in three-dimensional isotropic medium and �exact formulation for one-dimensional waves
	Introduction
	Fundamental equations
	Linear and quadratic variables
	Fundamental energy equations in isotropic and hysteretic damping material

	Longitudinal, shear and mixed components
	Longitudinal and shear displacement decomposition
	Pure longitudinal component and discussion

	Exact 1D quadratic formulation
	Energy transfers in 1D fields
	Quadratic formulation for 1D fields
	Exact formulation
	Exact homogeneous solutions
	Approximate solutions


	Agreement of the displacement- and the 1D quadratic-formulations
	Displacement formulation
	Quadratic formulation for 1D problems
	Numerical results for the displacement- and the quadratic-formulations

	Conclusion
	Acknowledgements
	Formulas
	Pure shear component
	Mixed components

	References


